The electrostatic characteristics of G·U wobble base pairs
نویسندگان
چکیده
G.U wobble base pairs are the most common and highly conserved non-Watson-Crick base pairs in RNA. Previous surface maps imply uniformly negative electrostatic potential at the major groove of G.U wobble base pairs embedded in RNA helices, suitable for entrapment of cationic ligands. In this work, we have used a Poisson-Boltzmann approach to gain a more detailed and accurate characterization of the electrostatic profile. We found that the major groove edge of an isolated G.U wobble displays distinctly enhanced negativity compared with standard GC or AU base pairs; however, in the context of different helical motifs, the electrostatic pattern varies. G.U wobbles with distinct widening have similar major groove electrostatic potentials to their canonical counterparts, whereas those with minimal widening exhibit significantly enhanced electronegativity, ranging from 0.8 to 2.5 kT/e, depending upon structural features. We propose that the negativity at the major groove of G.U wobble base pairs is determined by the combined effect of the base atoms and the sugar-phosphate backbone, which is impacted by stacking pattern and groove width as a result of base sequence. These findings are significant in that they provide predictive power with respect to which G.U sites in RNA are most likely to bind cationic ligands.
منابع مشابه
A novel form of RNA double helix based on G·U and C·A+ wobble base pairing.
Wobble base pairs are critical in various physiological functions and have been linked to local structural perturbations in double-helical structures of nucleic acids. We report a 1.38-Å resolution crystal structure of an antiparallel octadecamer RNA double helix in overall A conformation, which includes a unique, central stretch of six consecutive wobble base pairs (W helix) with two G·U and f...
متن کاملThe crystal structure of an oligo(U):pre-mRNA duplex from a trypanosome RNA editing substrate.
Guide RNAs bind antiparallel to their target pre-mRNAs to form editing substrates in reaction cycles that insert or delete uridylates (Us) in most mitochondrial transcripts of trypanosomes. The 5' end of each guide RNA has an anchor sequence that binds to the pre-mRNA by base-pair complementarity. The template sequence in the middle of the guide RNA directs the editing reactions. The 3' ends of...
متن کاملThermodynamic analysis of 5′ and 3′ single- and 3′ double-nucleotide overhangs neighboring wobble terminal base pairs
Thermodynamic parameters are reported for duplex formation of 40 self-complementary RNA duplexes containing wobble terminal base pairs with all possible 3' single and double-nucleotide overhangs, mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest neighbor analysis, the addition of a single 3' dangling nucleotide increases the stability of duplex f...
متن کاملStructural insights into CUG repeats containing the ‘stretched U–U wobble’: implications for myotonic dystrophy
Tracks containing CUG repeats are abundant in human gene transcripts. Their biological role includes modulation of pre-mRNA splicing, mRNA transport and regulation of translation. Expanded forms of CUG runs are associated with pathogenesis of several neurodegenerative diseases, including myotonic dystrophy type 1. We have analysed two crystal structures of RNA duplexes containing the CUG repeat...
متن کاملDeep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming
The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA) molecules is...
متن کامل